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Abstract

A new method for design and generation of spiral bevel gears of uniform tooth depth
with localized bearing contact and low level of transmission errors 1s considered.

The main features of the proposed approach are as follows:

(1) The localization of the bearing contact is achieved by the mismatch of the generating
surfaces. The bearing contact may be provided in the longitudinal direction, or in the

direction across the surface.

(2) The low level of transmission errors is achieved due to application of nonlinear relations
between the motions of the gear and the gear head-cutter. Such relations may be
provided by application of a CNC machine. The generation of the pinion is based on
application of linear relations between the motions of the tool and the pinion being
generated. The relations described above permit a parabolic function of transmission
errors to be obtained that is able to absorb almost linear functions caused by errors of

gear alignment.

A computer code has been written for the meshing and contact of the spiral bevel gears
with the proposed geometry. The effect of misalignment on the proposed geometry has also
been determined. Numerical examples for illustration of the proposed theory have been

provided.
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Introduction

The research project is directed at the design and generation of face-milled spiral bevel gears

with the following features:

(1)

(2)

(3)

The depth of the teeth is uniform which means that the height of the teeth is constant.

The gear tooth surfaces contact each other at every instant at a point. Thus, the
bearing contact is localized and therefore the sensitivity of the gears to misalignment

is reduced.

The surface contac. under the load is spread over an elliptical area, whose center is the
theoretical contact point. The set of instantaneous contact ellipses form the bearing
contact. The developed methods of synthesis provide two types of bearing contact that

may be directed: (i) in the longitudinal direction, or (ii) across the tooth surface.

Two generating surfaces, £, and I, are used for the generation of the pinion and
the gear tooth surfaces £, and £, respectively. The dimensions of the instantaneous
contact ellipse depend on the load applied to the gear drive, and on the chosen relation

between the curvatures of the generating surfaces.

Gear misalignment may cause transmission errors of a high level and of such a shape
that a high level of vibration will be resulted. The developed approach provides at each
cycle of meshing a predesigned parabolic function that will absorb the transmission

errors caused by misalignment. The cycle of meshing is determined as



where ¢, and IV, are the angle of pinion rotation and the pinion tooth number.

2 Method for Generation of Conjugated Pinion-Gear
Tooth Surfaces

Kinematic Relations
We will consider initially an imaginary process for generation when the pinion and gear
tooth surfaces will be generated simultaneously. Such an approach will permit one to obtain:
(i) important kinematic relations to be executed on the CNC machine, and (ii) to visualize
the possibility to obtain two kinds of the localized bearing contact. fn reality, the pinion
and gear tooth surfaces are generated separately as it is discussed in the following sections.
We start with the case when the axes of the pinion and the gear form an angle of 90°
(fig. 1). However, the developed approach is applicable for gear drives whose shaft angle
differs of 90°. The pinion and the gear during the process for generation perform rotation
about axes Xg, and Xg,, respectively. Two rigidly connected generating surfaces, £, and ¥,
perform rotation about the Z,, axis. Surfaces £, and . generate the pinion and gear tooth
surfaces £; and I,, respectively. The relation between the angular velocities w® and wl®)
is represented by the equation
:%j: =siny (2)
where v is the pitch angle of the pinion. The transmission function of the gear drive
must be obtained for each cycle of meshing as the sum of the theoretical linear function and
the predesigned parabolic function as shown in fig. 2. We may represent the transmission

function at the first cycle of meshing by the equation
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N
b= o1~ ad] (—% < < 1—’&;) 3)

Differentiating equation (3), we obtain that

w® = (%l — 2a¢; )wy (4)

2

Taking into account (see equation (2)) that

¢
Y7 sinm (5)
we obtain that
_ Nl ¢c 2
¢2 - N2 Sin 71 ¢C a( Sin ‘71) (6)
(c)
w(2) = (& - 2a¢c d (7)

N, sinvy, siny
Considering ¢. and w, as the input parameters, we may obtain w4y, ¢, and w®
using equations (2), (5), (6), and (7), respectively. Since ¢;(¢.) is a nonlinear function,
the generation of the gear requires application of a CNC machine for the execution of the
nonlinear function ¢;(o.).
Note: The ratio of w® and w® (w) = W) is constant during the process of pinion
generation, the instantaneous axis of rotation is directed along the X, axis, and the pinion
axode (in the process of meshing of the pinion tooth surface £, with the generating surface

$¢) is a circular cone with the pitch angle



The axode of the generating surface is the plane Z,, = 0 that is tangent to the pinion
axode.

. e (@ w@ .

The ratio of angular velocities mOR and @ s not constant. Therefore, the axode of
gear 2 being in meshing with the pinion and the generating surface X. is not a circular cone.
Generating Surfaces

It was mentioned above that two rigidly connected generating surfaces ¥; and ¥, are
applied for the generation of the pinion and gear, respectively. Two pairs of surfaces T; and
¥, are applied to provide two types of bearing contact for the generated pinion and gear
tooth surfaces £, and ¥,.

Case 1:

The two generating surfaces are a cone I, and a surface of revolution ¥.. The surfaces
are in tangency along a circle and are rigidly connected each to other in the process for
generation (fig. 3). Surfaces . and X, are in line tangency along lines L., while being in
mesh in the process for generation. Similarly, £, and X, are in line contact along lines Ly
(not shown in fig. 3). However, instantaneous contact lines L., and L do not coincide
each with other but are in tangency at a point that belongs to the circle L. This means
that surfaces ©; and I, are in point contact at every instant that moves along the circular
arc L., in the process of meshing. The path of contact L. (and the bearing contact) has a
longitudinal direction.

Case 2:

The generating surfaces &, and T, are rigidly connected cones that are in tangency along
their common generatrix L., (fig. 4). Only contact lines L., between surfaces X. and X, are
shown in the figure. Each contact line L., and the respective line L,; are in tangency at the

respective point of the generatrix L. This point is the current point of tangency of gear



tooth surfaces ¥; and X,.

The generating surfaces ¥; and X, are the surfaces of two head-cutters that are applied
for the generation of the pinion and the gear, respectively. In reality, the head-cutters are
provided with straight line blades or with circular arc edge blades but not with surfaces. Such
blades are rotated about the head- cutter axes to form the generating surfaces. The angular
velocity of rotation of blades must provide the required velocity of cutting or grinding, but
is not related with the process for generation of the pinion or gear tooth surfaces.

The head-cutter is installed on the cradle of the cutting machine and then performs with
the cradle the rotation about the Z,, axis with the angular velocity w(® = w(®. Details of

the settings of the head-cutter on the cradle are discussed in sections 3 and 4.

3 Generation of Gear Tooth Surfaces

Applied Coordinate Systems and Machine-Tool Settings

We have considered in Section 2 an imaginary process of generation of conjugate pinion-
gear tooth surfaces based on the assumption that the surfaces will be generated simultane-
ously. In reality, the pinion-gear tooth surfaces are generated separately, as it was mentioned
above.

This section deals with gear generation and the applied machine-tool settings. The gear
tooth surfaces are generated by a head-cutter that is provided with straight-line blades (fig.
5). Both sides of the gear tooth are generated simultaneously. The blades are rotated about
the head-cutter axis. The edges of rotated blades form two circular cones as the generating
surfaces used for the manufacturing of the gear.

Henceforth, we will apply the movable coordinate systems S., and S, that are rigidly

=



connected to the cradle and the gear, respectively (fig. 6). The fixed coordinate system S,
is rigidly connected to the cutting machine. Coordinate system Sg, is an additional fixed one
and is rigidly connected to the coordinate system Sy,. The orientation of Sy, with respect
to S, is determined by angle 4, = v — 1, where v, is the pitch angle of the pinion pitch
cone. During the process for generation, the cradle and the gear perform related rotations
about the X,.-axis and the Xg,-axis, respectively. The current angles of rotation of the
cradle and the gear are designated by ¢., and @2, that are related by equation (6) in which
we change the designation of . for ¢.,. This relation provides the predesigned parabolic
function designated for the absorption of transmission errors caused by misalignment.

The installment of the head-cutter is shown in fig. 7(a). Figure 7(a) shows the position
of the cradle when ¢., = 0, and the coordinate system S, coincides with S,,. Coordinate
system S,, is an additional coordinate system that is rigidly connected to S,, and performs
rotation with S, as shown in fig. 7(b). Coordinate axes of S,, and S, have the same
orientation. Axis Z,, is the axis of the head-cutter (see below). The installment of the
head-cutter in S., may be determined by the parameters of the triangle with the apexes
Oc,» Op,, and M, where M is the mean point of the cone distance of gear 2 (fig. 8). The
installment of the head- cutter in coordinate system S., may be determined as well by Hg

and V; (fig. 8), where

Hg = Ay — Ryzsin 32 (9)
Vg = Ryzcos B, (10)

Here, R.» = |0,,M| is the nominal radius of the head-cutter (fig. 8), An = |0, M|,
and B, is the spiral angle of the gear. Alternative coupled parameters of installment, S, =

|0, 0y, | and g2, Hg and Vg, are related by the equations
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Sr2 = (HG + V3)™* (11)

g = tan‘l(ﬁ-—(;) (12)

Equations of Gear Generating Surfaces

We have mentioned before that two cones as generating surfaces are used for cutting of
the space of the gear (fig. 5). Fig. 9(b) shows the cutting blade. and fig. 9(a) shows one
of the generating cones. The generating cone is formed by rotation of the blade edge about

the Z,, axis. The equations of the cone are represented in .S, as

(re — Sgsinag) cos fg
(13)

r,,(Sc,0c) = { (r. — Sgsinag)sinfg

—SG cos agG

where 8 and Sg (fig. 9(a)) are the surface coordinates (the Gausian coordinates); ag is
the blade angle; r. is the radius of the head-cutter that is measured at the tip of the blade.
Parameters 7. and R,, are related as follows

w
Te = RuZ + %_ (14)

The upper and lower signs in (14) correspond to the gear concave and convex sides.
Equations (13) may represent both generating cones, if we will use the rule of signs in
equation (14), and consider that ag > 0 and ag < 0 correspond to the gear concave and
convex sides, respectively.

The unit normal to the gear generating surface is represented by the equations

_ Np, _ % 9 Jry,
|Np,| TP 98 0Se

Equations (14) and (15) yield

Np,



— cos ag cos O
n,,(fg) = | —cosagsinfg (16)
sin ag

Algorithm for Derivation of Gear Tooth Surfaces
The derivation of gear tooth surface £, is based on the following procedure:
Step 1:

Initially we derive the family of generating surfaces in S; using the matrix equation

rz(SGaOG» ¢c:) = M2p2rp2(SG’8G) (17)
= M2d2(¢2)MdzmMmc-z(¢cz )Mczmrm(SGa GG)

where ¢, and ¢., are related by equation (6).
Step 2:
Then, we derive the equation of meshing between the gear and the generating surface

that we represent in the form

nf,’?) . vﬁ,f’z) = f(Sg,0c,9:,) =0 (18)

where n{??) is the unit normal to the generating surface £,,, and v("2?) is the relative (sliding)
velocity. The scaler product (nf??) - v{r22)) may be represented in any coordinate system. In
our derivations, the scaler product is represented in Sy,.

Note: we may represent as well the equation of meshing in the form

N@2) . (22 = g (19)

where N{?2) is the normal but not the unit normal to the generating surface.
Equations (17) and (18), considered simultaneously, represent the gear tooth surface as

the envelope to the family (17) of generating surfaces.

10



Derivation of Family of Surfaces (17)
Vector function r,,(Sg,8c) has been already represented by (13). Matrices in equation

(17) are represented as follows (see figs. 6,7, and 8)

1 0 0 07
_ |0 cos¢g, sing; 0
Mza, = 0 —sing; cos¢, 0 (20)
0 0 0 1]
cosy, 0 sinvy, 0]
0 1 0 0
Magm = | _ siny, 0 cosvy, O (21)
0 0 0 1 ]
cos¢,, —sing, 0 0
_ | sing.,, cosg, 0 O
Mne =1 0 10 (22)
0 0 01

Equations (17) and (20)-(22) represent the family of generating surfaces in form of three
parameters. The relation between these parameters is represented by the equation of meshing
(18).

Derivation of Equation of Meshing
We represent in coordinate system S, the unit normal n{??) to the generating surface

using the following matrix equation

n%?) (05, $2) = Lme, Leyp N5, (0) (23)
Here:
Vector function n,,(0g) is represented by equation (16). Matrix L is the 3 x 3 submatrix
of the 4 x 4 matrix M. After derivations, we obtain

n,(0g, ¢,) = | —cosagsin(fc + ¢.,)

sin ag

l: — cos ag COS(GG + ¢c2) :|
(24)

11



As a reminder, the variables ¢, and 4., are related by equation (6).
The derivation of the relative velocity v(?2?) is based on the following considerations
Step 1:

We represent vector v{72?) as follows

Vi) = () — W) x xie) (25)

where
wP) =0 0 wT (26)
w? = Low® = Ly, Law® = [w®cosy, 0 w@siny,]” (27)

The relation between w(??) and w(?) may be obtained by differentiating equation (6) that

yields

(c2)

w® =1 :
N,siny, sin<y; sinm

(28)

4 Machine-Tool Settings for Pinion Generation

Introduction

Henceforth, we will consider methods for the pinion generation that provide two types of
the path of contact : across the surface and along the surface. The developed machine-tool
settings will be determined: (i) for the imaginary process for generation based on application
of two rigidly connected generating surfaces (see figs. 3 and 4), and (ii) machine-tool settings

represented in terms of the Gleason Works terminology.
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Coordinate Systems Applied for Pinion Generation

Movable coordinate systems S., and S; are rigidly connected to the cradle of the cutting
machine and the pinion, respectively (fig. 10). An auxiliary coordinate system S, is rigidly
connected to the head-cutter and the cradle. Axes of coordinate systems S, and S;, have
the same orientation. Fixed coordinate systems S,

and Sy, are rigidly connected to the cutting machine. The pinion and the cradle perform
rotation about axes z4, and zn, respectively. During the generation, the cradle and the

pinion are rotated uniformly, and the angles of rotation are related as follows :

by = Brsinm (29)

where =, is the pinion pitch angle.

Pinion Machine-Tool Settings

The pinion machine-tool settings for the imaginary process of generation are determined
by the following set of parameters (fig. 10): 71, Sr1 and 1. The machine-tool settings for the
real process of generation may be determined by turning of systems Si, Sa,, S5, and S, at
180° about the z,,-axis. Fig. 11 shows the installment of the pinion on the cutting machine
and its rotation during the process for generation. Fig. 12(a) shows the initial installment of
the head-cutter and cradle and fig. 12(b) shows the rotation of the cradle during the process

for generation (fig. 12(b)).

5 Equations of Pinion Tooth Surfaces

Orientation of Bearing Contact Across Surface

13



The mentioned type of bearing contact is provided by application of two rigidly connected
circular cones that generate the gear and pinion tooth surface, respectively (fig. 4). Fig. 13
shows the cross sections of the surfaces of the pinion and gear head-cutters in plane z,, = 0
when the cradle is at the initial position that is determined with ¢., = 0, and the coordinate
systems S,, and S,, coincide each with other (fig. 10(b)).

Fig. 14 shows the profiles of the cutter blades used for the generation of the pinion
concave side and convex side surfaces, respectively. Fig. 15 shows the generating surface
(cone) in system S,,. The derivation of the generated pinion tooth surface is based on the
following procedure.

Step 1:
The head-cutter generating surface is represented in S, as
(rep — Spsinay) cos b,
(rep — Spsinap)sinb,

~S,cosay
1

Here, 7., is the point radius (fig. 14), @, is the blade angle. The sign of a, should be

(30)

Ip, =

considered as positive and negative when the pinion convex and concave tooth surfaces are
generated, respectively. Parameters 0, and S, are the head-cutter surface parameters.

The unit normal of the head-cutter generating surface is represented in S, as

_ N,, . _ Or,, _ Orp
e = N, | + N = 06, . dsp (31)
Equations (30) and (31) yield
—cosay, cos b,
n, = | —cosay,sind, (32)

sin ap
Step 2:

14



The family of head-cutter generating surfaces is represented in 5; by the matrix equation

rl(Sp’ am ¢61) = MldldemMm61M01P1 Tp (Sp’ 0?)

Here,
1 0 0 0]
M. = 0 cos¢, sing; O
4 =10 —sing; cos¢; O
0 0 0 1
cosy; 0 siny; 0]
0 1 0 0
Maym = | _ siny; 0 cosy; O
0 0 0 1|
cos¢,, —sing, 0 0
_ | sing.,  cos g, 0 0
Mma =| g 0 10
0 0 01
1 0 0 S,qcosqny
0 1 0 Sp;sing
Man=|0 0 1 0 l
0 00 1
Step 3:

The equation of meshing is represented in system S as

N, - vt =0

Here,
Nrm
nm(ﬁp, ¢c]) = Nym = me1LC1m nCI(GP)
Nem
where

15
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(34)

(35)

(36)

(37)

(38)



Im = Mupe, Mep, Ty
— S, sina, cos(, + éc;) + repcos(B, + 6, ) + Sna cos(@., + q1) 1
= | —S,sina,sin(f, + ¢c,) + repsin(fp + éc,) + Sr1 sin(¢e, + q1) (41)
— S, cos ap

Using the designations

By = reopcos(fp + écy) + Sracos(de, + 1) (42)
B2 = Te Sin(op + ¢c1) + Srl Sin(¢q + QI)
we obtain
—S, sin a, cos(0, + ¢c,) + By
I = | —Spsinapsin(f, + ¢c,) + B2 (43)
—Sp cos ay
0 wj COS Yy wy COS T
wlah) = wlen) — w =1 0 |- 0 = 0 (44)
We, wi SIn 0
Then, we obtain that (since w,, = wy sin7;)
0
vial = @l xp, = S, cos a,, cos 1 (45)
—S,sinay, sin(f, + ¢, ) cosm + By cosm
We have assumed not loosing the generality of the approach that |w;| = 1.
The equation of meshing yields
Nym Sp COS O, COS Yy — N2m Sp SIN O sin(f, + &c,) cos 11 + nemBacosy =0 (46)
or
—nsz2
Sp(0,, 0c,) = - - : 47
(0 01) Ty COS Qp — Nz SIN @ SIN(6, + Oy ) (47)
Step 4:

16



The envelope to the family of generating surfaces may be represented in two parameter

form if we eliminate in equation (33) parameter S, using equation (47).

Orientation of Bearing Contact in Longitudinal Direction

The mentioned orientation of the bearing contact can be achieved by application of
generating surfaces shown in fig. 3. The profiles of the blades of the head-cutter used for
the generation of the pinion are shown in fig. 16.

The derivation of the equations of the pinion tooth surface generated by a head-cutter
with circular arc blades is based on the following procedure:
Step 1:

The coordinates of the center of the blade circular arc for the concave side are represented

by the following equations (fig. 16) :

OOCI = OM] + M1C1 (48)

where OM] =Ters Allcl = Rl

Equation (48) yields the following equations for the coordinates of center C

) =0,C i, =1, — Ricosa,
y(©) =0,C;j.=0 (49)
(&) =0,C, -k, = —Rysina,

Step 2:
The position vector of a current point of the circular arc is represented in S, by the

equation (fig.16)

OOA = 0001 + ClA = OOCI + Rll'lo (50)

17



where

n,=[cosA; 0 —sinX]” (51)
is the unit normal to the circular arc that is represented in S,.
Step 3:
The head-cutter surface is a surface of revolution that is generated while the circular
arc is rotated about the axis of the head cutter. The head-cutter surface is represented in

coordinate system S, as follows

rp, = r;?‘) + Rin,, (52)
Here
ri) = Ly,ori ") (53)

is the position vector of point C; that is represented in Sy
n,, = Lpon, (54)

is the unit normal to the generating surface that is represented in Sy,

cos@, —sinb, 0
L,,=| sinf, cosb, O (55)
0 0 1
Step 4:

For the following derivations, we represent the surface of the head-cutter in coordinate

system S, (fig. 10(b)). We may use for this purpose the following vector equation

rm = 0,0, + 1) + Rin, (56)

18



Here (fig. 10(b))

0c,0,, = Snfcosqu  sings 0T (57)
rSr(;:l) = mel I'p, (58)
n, = L.,,.,C1 Ny, (59)
cos¢d. —sing, 0
Lpnc, = | sing. cosé. 0 (60)
0 0 1

Step 5:
The pinion tooth surface is represented in S; as the envelope to the family of the head-
cutter surfaces that is generated in coordinate system S;. The equation of the family of

surfaces is as follows :

rl(/\lvgpa ¢c1) = Mld(¢1)Md1mrm()‘l,0pv ¢C1) (61)

As a reminder, angles ¢., and ¢,, angles of rotation of the cradle and the pinion, are

related by the equation

¢Cl = QS] sin T (62)
Step 6:
The envelope to the family of surfaces is determined by equation (61) and the equation

of meshing that we represent as follows

vl g =0 (63)

The final expression of the equation of meshing is based on the following derivations.

The sliding velocity is determined as

19



var) = 7)o = (W) — W)Y X My, T, = @0P) x (6 + Riny,)  (64)

Equations (63) and (64) yield

(W) x £69) -ny = Vi) )
where
rf‘) = me Ip, (66)

and v{171:€1) designates the relative velocity for point C;.
Step 7:

The surface unit normal n,, is a vector function of three variables (Ay,8, ;). We may
simplify the vector function n,,(A;,8, 8.) using the following considerations :

(1) Equations

virllpl) . nm — 0 (67)

and

v7(711P1.C1) ‘n, =0 » (68)

yield that the relative velocities determined at the point of tangency of the head-cutter and
the pinion, and at the center of the circular arc are collinear. Taking this into account, we

may represent the unit normal n,, to the surface of the head-cutter by the following equation

Tm X vgpl .C1)

1p91,C
TmXVSnm 1)|

n,, =

(69)

20



where 7., is a unit vector of the tangent to the 8, coordinate line on the head-cutter
surface, that is represented in S,, system. The unit vector Tr, is represented by the following

equation

Tm(gp) = Lmp, projo = Lpnp, Tpy (70)

Vector j, is perpendicular to the plane (z,,2,) of the circular arc (fig. 16). A point of

the circular arc traces out in S,, a circle, and the unit tangent 7, is represented as

—sinf,
Ty = LpjoJo= | cosb, (71)
0

The advantage of application of equation (69) is that we may represent the surface unit
normal by the vector function n,(6,, ¢, ). Then, the equation of meshing will yield the

relation

vglm'Cl) Ny = f(om ¢c1) =0 (72)

that is free of parameter A;.

Angle ), can be obtained from the equation

COSA\; = T - Ny (73)

Note : Similarly, we may derive the equations of the convex side of the pinion tooth

surface. Center C, of the circular arc (fig. 16) is represented in S, by the equations

zl€) =r, + Racosa,
yie =0 (74)
z(C2) = _Rysina,
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6 Computerized Simulation of Meshing and Contact

The goals of this investigation are : (i) the determination of paths of contact for aligned
and misaligned gear drives, (ii) and the determination of influence of misalignment on the
transmission errors and the shift of the bearing contact.
Conditions of Continuous Tangency

We set up three coordinate systems Si, S;, S, (fig. 17) that are rigidly connected to
the frame, the pinion and the gear; ¢’ and ¢,' are the angles of rotation of the pinion
and the gear when they are in mesh; H, V, Q &' are the parameters used to simulate the
misalignments that represent.

The contact of the tooth surfaces is localized and they are in tangency at every instant
at a point. The simulation of meshing is based on the condition of continuous tangency of

pinion-gear tooth surfaces £; and ,, that are represented in coordirate system S, as follows

rszl)(ap’ Pers ¢y) = 1’22)(96, Py ¢2) (75)
0y (65, e1, 61) = 07 (8, 023, 63) (76)
where |ng)| = [n!¥| = 15 (,, é,),(86, ¢c,) are the surface parameters of the pinion and

the gear, respectively; ¢, ¢, are the angles of rotation of the pinion and the gear being in
mesh.

Equations (75) and (76) represent a system of five nonlinear equations in six unknowns

represented as

fi(ep,(bcnth/ecv ¢c23¢’2) =0 (Z = 1’ 5) (77)
where f; € C'

22



One of the unknowns in equation system (77), say @, is chosen as the input one. The
continuous solution of these equations is an iterative process that is based on the following
procedure.

Using the first guess, we consider that a set of parameters designated as

P©) = (65,4, (41),65", 6, (1)) (78)

satisfies equation system (77). We assume as well, that we have

8(flaf2af3a f47 fS)
a(gp, ¢cn9G1 ¢cza¢/2)

Then, in accordance .o the Theorem of Implicit Function System Existexnce {15], equation

As = #0 (79)

system (77) can be solved in the neighborhood of P} by functions

9?(¢’1)a¢c1(¢,1)’06(¢ll)s ¢cz(¢’1)a ¢I2(¢Il) (80)

The solution of these nonlinear simultaneous equations is found by numerical methods.
The path of contact on the pinion tooth surface may be represented by the following

expressions

rl(gpv¢cx)a 9p(¢,1)’ ¢c1(¢’1) (81)

Similarly, the path of contact on surface £, may be represented by

1‘2(9(;, ¢C2)v OG(QS’I)’ ¢C2(¢ll) (82)

The transmission errors caused by misalignment are determined by the equation

! r ! N 1
Ap, = 05 — ‘N_:¢1 (83)
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Cerivation of Equation System (80)

We use for derivation matrix equations (84)-(87), equations of surfaces ¥, and X, and

the surface unit normals.

r (85, 6o, #1) = M (1)r1(85, 6c,)

1 0 0 H
10 cosgy sing; O (84)
“ 10 —sing}] cosg; 0 r1(0p: 8c1)
0 0 0 1
£ (06, 6cr 62) = Ma(8)ra2(0, 6c;)
cos(y+¢&') 0 —sin(y+6) Q 1 0 0 0
_ 0 1 0 -V 0 cos¢y —sing; 0 r2(06, bc,)
T | sin(y+d) 0 cos(vy+¢) O 0 sing, cosg, 0| V¢ %=
0 0 0 1 0 0 0 1
(85)
1 0 0
n (0, 60,91) = | 0 cosgi sinol | m(fy b)) (86)
0 —sing¢| cosdj

nf)(ﬂc, Py O3)

cos(y+46) 0 —sin(y+¢')
= 0 1 0

1 0 0
0 cos¢y —sing, | ny(0g, ¢c,)

sin(y+6') 0 cos(y+4) 0 sind), cos¢,

(87)
Here; v; is the pitch angle of the pinion, 72 = 7 — 71, 7 is the angle formed by the

pinion-gear axes of rotation. Usually, v = 90°.

Be advised that in the case when the generating surface is a cone, the unit normal is
represented by a vector function of one variable (see Section 3)
Bearing Contact

Theoretically, the pinion and gear tooth surfaces are in point contact. Under the load,

the contact is spread over an elliptical area. The determination of dimensions and orientation
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of the instantaneous contact requires the knowledge of principal curvatures and directions
of the contacting surfaces. The solution to this problem is substantially simplified due to
representation of the curvatures of the generated surface by the curvatures of the generating
surface and the parameters of motion [15].

For the case when the pinion generating surface is a cone, the principal curvatures of the

pinion generating surface are represented as

KD = 0 (88)
kY = cosa,/(re — Spsinay)
The principal directions on the pinion generating cone are
el = [~sind, cosf, O]
1 _ e : : T (89)
el!)/ = [sina,cosf, sina,sinf, — cosay

For the case when the pinion generating surface is a surface of revolution, the principal

curvatures of the pinion generating surface are represented as

(1) _

ky! = cosA/(Xo + Ry cosAy)

The principal directions on the pinion generating cone are
el = [—sinf, cosd, 0T (91)
el) = [sin) cosf, sin) sinf, —cos M)T

Similarly, when the generating surface of the gear is also a cone, we have that the principal

curvatures of the gear generating surface are

KD =0

1
k§2’ = cosag/(r. — Sgsinag)

The principal directions on the gear generating surface are
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el = [-sinfg cosbs 0T
L
@ =

(93)

[sinagcosfc sinagsinfg - cos ag)t
The principal directions are represented in systems S,, for the pinion case, and S, for
the gear case, respectively.
Because the generating and generated surfaces are in line contact, their principal curva-

tures and directions are related by the following three equations [15]

7 3 2t13t23
t3s — tiz — (kg — kn)tss

_ 2t4at
kg — ks = {33 s1In 50 (94)

t2, + t3
ko+ks = kp+kp+ 322

ta3
Here, ky, k;, are the principal curvatures of the generating surface; k;, k; are the principal

tan2c =

curvatures of the generated surface; o is the angle between the principal directions of the
generating and generated surfaces (fig. 18(a)). The expression for t3, t3, and i3 are
represented in {15].

The determination of the dimensions of the contact ellipse and its orientation is based

on application of following equations

g sin a1

tan 217 =
g1 — g2 cos a1?)

where
o=k -k

g2= k) ~ k)

)

a1 = cos~1(el" - e
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k{l) and kél) are the principal curvatures of the pinion surface. k&z) and kéz) are the
principal curvatures of the gear surface.

The major axis and minor axis of the contact ellipse may be determined as

é 6
SO o

where § is the elastic approach obtained from experimental data; A and B are determined

by
A = LD - k2 ~ (67 — 20197 cos 201D + g)H] (97)
B = %[k‘(r_:l) - k(zz) + (97 — 29192 cos 2a01%) + gg)%]
and

KD = k0 4 K

KD = k@ 4 O
7 Numerical Examples

Introduction

The purpose of the numerical examples is: (i) to determine the influence of errors of
alignment on the transmission errors and the shift of the bearing contact, and (ii) to prove
that the predesigned parabolic function is able to absorb the transmission errors that are
caused by the errors of alignment. We emphasize that the determination of transmission
errors caused by misalignment is based on the following approach:

(1) We consider an imaginary process for generation when an ideal transmission func-
tion is provided. Then, using TCA, we simulate errors of alignment and determine the

transmission errors that are caused by the respective error of alignment.
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(2) On the second stage of investigation, we consider again the imaginary method of
generation that has been provided in the previous section. We remind that this method
of generation provides for each cyclc of meshing a transmission function and a predesigned
parabolic function as the sum of the ideal linear function and a predesigned parabolic func-
tion. Using the TCA, we consider the meshing and contact of the gear misaligned gear drive
that allows to determine: (i) the resulting function of transmission errors as the sum of the
predesigned parabolic function and the function of errors that is caused by misalignment.
We are also able to determine the shift of the bearing contact caused by misalignment by
applying the TCA method.

The simulation of meshing and contact has been accomplished for both methods of gen-
eration described above that provide the longitudinal bearing contact, and the across the
surface bearing contact. The results of computation confirmed that the bearing contact is
stable, and the predesigned parabolic function is able indeed to absorb the almost linear
functions of transmission errors caused by the respective errors of alignment.

Input Data:

The input data is represented in Tables 1-5.

Output Data:

The results of computation are reppesented for two cases of generation: (i) by application
of a pinion head-cutter with straight blades (figs. 19-42); (ii) by application of a pinion
head-cutter with circular arc blades (figs. 43-66). It is assumed that in both cases the gear
is generated by a head-cutter with straight blades. In each case, four sets of figures represent
the respective influence of H, @, V, ', which indicate the axial displacement of the pinion,
the gear, the offset, and the change of the shaft angle, respectively. Alignment errors are

given in millimeters, ¢’ is given in arc minutes.
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Table 1: Blank Data

Pinion | Gear
Number of teeth 11 41
Shaft angle 90°
Mean spiral angle 35° 35°
Hand of spiral LF RH
Outer cone distance (mm) 90.07
Face width (mm) - 27.03
Whole depth (mm) 10.0 10.0
Pitch angle 15°1" | 74°59
Root angle 15°1" | 74°59
Face angle 15°1" | 74°59°

In each set of figures, we represent:

(i) The initial influence of misalignment on the transmission errors, when the predesigned
parabolic function has not been applied. The transmission function caused by misalignment
is almost a linear function (see. for instance, figs. 19 and 20).

(ii) The interaction of the linear function of transmission errors with the predesigned
parabolic function. The results of TCA show that the obtained resulting function is indeed
a parabolic function (see, for instance, figs. 21 and 23).

(iii) The location of bearing contact for a misaligned gear drive (see, for instance, figs.
23 and 24).

Similar sets of figures are represented for other kinds of misalignment.
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Table 2: Gear Cutter Specification

Blade angle 20°
Cutter diameter (mm) | 152.4
Point width (mm) 2.79

Table 3: Gear Machine Tool Settings

Radial setting (mm)

70.53744

Cradle angle

—62°14/

Machine center to back (mm) | 0

Sliding base (mm) 0
Blank offset (mm) 0
Machine root angle 74°59’

Table 4: Pinion Machine Tool Settings for Generation by a Cone

Convex | Concave
Cutter blade angle 20° 20°
Cutter point radius (mm) 71.7222 | 80.4876
Radial setting (mm) 68.04991 | 73.31925
Cradle angle —57°50" | —66°12’
Machine center to back (mm) | 0 0
Sliding base (mm) 0 0
Blank offset (mm) 0 0
Machine root angle 15°1 15°1
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Table 5: Pinion Machine Tool Settings for Generation by Head-Cutter with circular Arc

Blades

Convex | Concave
Cutter point radius (mm) 71.7222 | 80.4876
Radial setting (mm) 68.04991 | 73.31925
Cradle angle —-57°50" | —66°12'
Machine center to back (mm) | 0 0
Sliding base (mm) 0 0
Blank offset (rmm) 0 0
Machine root angle 15°1' 15°1

8 Conclusion

Extension of application of a CNC machine for generation of spiral bevel gears with the fol-
lowing features has been discussed: (i) The gears are face-milled, the tooth depth is uniform.
(i) Two types of bearing contact are provided directed (a) in the longitudinal direction, and
(b) in the direction across the surface. (iii) A predesigned parabolic function of transmission
errors is provided for the absorption of transmission errors caused by misalignment. (iv)
Equations of generated pinion-gear tooth surfaces have been derived. (v) TCA computer
program has been developed and the influence of misalignment on the transmission errors
and the shift of the bearing contact has been investigated. The computations that were
performed confirmed the stability of the bearing contact, the low level of transmission errors
and the favorable shape of the function of transmission erroré, of a parabolic type, for a

misaligned gear drive.
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g Directions for TCA Program Use

There are two TCA programs for two different cases. One program is BEVEL.FOR, for the
case that both the pinion and the gear generating surfaces are cone surtaces. The other
program is RBEVEL.FOR, for the case that the pinion generating surface is a surface of
revolution, the gear generating surface is a cone surface. For both programs the input data

files and the output data files are almost the same, except that there is an additional arc

radius, RHO, in the input data files for program RBEVEL.FOR.

Input data

1. Control codes

(a) For right hand gear JCH=1, for left hand gear JCH=2
(b) TL1 and TL2 are numbers of extra point on the contact path which should not be
larger that 2

(c) MM is the number of contact points

2. Blank data

TN1—Pinion number of teeth

TN2—Gear number of teeth

C—Shaft offset (zero for spiral bevel gear) (mm)
TW-—Face width of gear (mm)

GAMMA—Shaft angle (degree)
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MCD—Mean cone distance (mm)
RGMA1—Pinion root cone angle (degree)
B1—Pinion spiral angle (degree)
B2—Gear spiral angle (degree)
RGMA2—Gear root cone angle (degree)
FGMA2—Gear face cone angle (degree)
PGMA2—Gear pitch cone angle (degree)
ADD2—Gear mean addendum (mm)
DED2—Gear mean dedendum (mm)
WD—Whole depth (mm)
CC—Clearance {mm)

DEL—Elastic approach {mm)

3. Gear cutter specification

RU2—Gear nominal cutter radius (mm)
PW2—Point width of gear cutter (mm)

ALP2—Blade angle of gear cutter (degree)

4. Gear machine-tool settings

XG2—Machine center to back (mm)
GAMA2—Gear machine root angle (degree)

XB2—Sliding base (mm)
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EM2—Blank offset (mm)

4. Pinion machine-tool settings

RCF—Point radius (mm)

XG1—Machine center to back (mm)
XB1—Sliding base (mm)

EM1—Blank offset (mm)

GAMA1—Pinion machine root angle (degree)

AlP1—Blade angle of pinion cutter (degree)

6. Misalignments

A—Constant coefficient of the predesigned parabolic function

H—Misalignment along the pinion axis (mm)

Q—Misalignment along the gear axis (mm)

V—Misalignment of axis offset (mm)

§'—Misalignment of shaft angle (arc min.)

Input data files

Files 70 and 60 are for program RBEVEL.FOR, file 70 for the convex side, file 60 for
the concave side. These two files must be read together. Files 90 and 80 are for program
BEVEL.FOR, file 90 for the convex side, file 80 for the concave side. These two files must
be read together.

Output data files
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File 9 is an overall output data file. All the input and output information is stored in this
file. File 91 stores the information of transmission errors for the convex side; file 93 stores
the information of transmission errors for the concave side. File 92 stores the information of
contact path and contact ellipse for the convex side; file 94 stores the information of contact

path and contact ellipse for the concave side.
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Figure 3: Generating surfaces £, and £, that provide contact path along the surface
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Figure 4: Generating surfaces I, and Z, that provide a contact path across the surface
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Figure 17: Coordinate systems applied for simulation of meshing
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Figure 27: Resulting transmission errors: Q=0.01lmm (Convex side)
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Figure 29: Shift of bearing contact: Q=0.01mm (Convex side)

-4

1 1 i 1 1

0 S 10 1S 20 S 30

Tooth height (mm)
4
i

Tooth length (mm)
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Figure 32: Transmission errors: V=0.01mm (Concave side)
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Figure 33: Resulting transmission errors: V=0.01mm (Convex side)
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Figure 44: Transmission errors: H=0.01mm (Concave side)
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Figure 55: Transmission errors: V=0.0lmm (Convex side)

Ag, (arc scc.)

1
-0 -40 -20 0 20 40 60
¢, (deg.)

Figure 56: Transmission errors: V=0.0lmm (Concave side)
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Figure 57: Resulting transmission errors: V=0.01lmm (Convex side)
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Figure 58: Resulting transmission errors: V=0.01mm (Concave side)
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Figure 59: Shift of bearing contact: V=0.01mm (Convex side)
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Figure 60: Shift of bearing contact: V=0.0lmm (Concave side)
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Figure 61: Transmission errors: §'=1 arc min. (Convex side)
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Figure 62: Transmission errors: §'=1 arc min. (Concave side)
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Figure 63: Resulting transmission errors: §'=1 arc min. (Convex side)
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Figure 64: Resulting transmission errors: §'=1 arc min. (Concave side)
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Figure 65: Shift of bearing contact: §’=1 arc min. (Convex side)
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Figure 66: Shift of bearing contact: §’=1 arc min. (Concave side)
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